NG

Hydraulic conductivity determination by Lugeon test – testing in practice

Workshop – Drainage of large rockslides Oslo 30 – 31st January 2017

Lloyd Tunbridge NGI

History

Originally suggested as a test for assessing need for foundation grouting at dam sites.

- Lugeon, M. 1933. Barrages et Geologie. Dunod, Paris.
- Lancaster-Jones, P. F. F. 1975. The interpretation of the Lugeon water-test. Q. Jl Engng Geol. Vol 8 pp. 151-154.
- Houlsby, A. C. 1976. Routine interpretation of the Lugeon watertest. Q. Jl Engng Geol. Vol 9 1 pp. 303-313.

History

ASTM D4630 - 96(2008)

Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test

F. C. BRASSINGTON & S. WALTHALL

FIG. 2. General arrangement for inflow packer testing.

Test procedure

Five consecutive water (pump-in) tests are done, each of ten minutes duration; the

- 1st 10 minutes is at a low pressure--(pressure "a")
- Ind 10 minutes run is at a medium pressure--(pressure "b")
- **→** 3rd 10 minutes run is at a peak pressure--(pressure "c")
- 4th 10 minutes run is at a medium pressure--(pressure "b" again)
- **▼** 5th 10 minutes run is at a low pressure--(pressure "a" again)

Test procedure - simplified

Three consecutive water (pump-in) tests are done, each of five minutes duration at the same pressure – if flow rates are not consistent then continue with more five minute tests.

Interpretation

A single Lugeon value is then calculated for each one of these five tests, using the formula:

$$L = \frac{10 \times Q}{P}$$

L = Lugeon value

Q = water taken in test (litres/metre/min)

P = test pressure (bars)

10 as correction for standard test pressure of 10 bar.

TABLE 1: Lugeon patterns for various occurrences during testing:

Their interpretation and percentage occurrences

NG Houlsby (1976)

Interpretation

	Behaviour	Lugeon Pattern	Flow vs. Pressure Pattern	Representative Lugeon Value	
	Laminar Flow			Average of Lugeon values for all steps	
	Turbulent Flow		1 million	Lugeon value corresponding to the highest water pressure (3rd step)	
	Dilation			Lowest Lugeon value recorded, corresponding either to low or medium water pressure (1st,2nd, 4th, 5th step)	
	Wash-out			Highest Lugeon value recorded (5th step)	
	Void Filling			Final Lugeon value (5th step)	

Based on Houlsby (1976)

Interpretation

The following table describes the conditions typically associated with different Lugeon Values, as well as the typical precision for reporting these values (Quiñones-Rozo, 2010).

Lugeon Range	Classification	Hydraulic Conductivity Range (cm/sec)	Condition of Rock Mass Discontinuities	Reporting Precision (Lugeons)
<1	Very Low	< 1 x 10 ⁻⁵	Very tight	<1
1-5	Low	1 x 10 ⁻⁵ - 6 x 10 ⁻⁵	Tight	± 0
5-15	Moderate	6 x 10 ⁻⁵ - 2 x 10 ⁻⁴	Few partly open	± 1
15-50	Medium	$2 \times 10^{-4} - 6 \times 10^{-4}$	Some open	± 5
50-100	High	$6 \times 10^{-4} - 1 \times 10^{-3}$	Many open	± 10
>100	Very High	> 1 x 10 ⁻³	Open closely spaced or voids	>100

Interpretation - software

AquiferTest

AquiferTest is an easy-to-use software package for analyzing, interpreting and visualizing pumping and slug test data.

LEARN MORE

NORWEGIAN GEOTECHNICAL INSTITUTE NGI.NO