Stability of the Aknes rock slope
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-A summary of results from two PhD and one MSc studies
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Analysis of rock slope stability typically follows
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Analysis of shear strength at Aknes 1 (of 3)

9 Barton-Bandis shear strength criterion has been used for assessment of shear strength
along joints (Kveldsvik et al. 2008, Kveldsvik et al. 2009a, Grgneng et al. 2009a and
Langeland 2014), including probabilistic analysis of the parameters and sensitivity
analysis (Kveldsvik et al. 2008)
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Analysis of shear strength at Aknes 2 (of 2)

79 A new methodology for estimating the shear strength of a complex sliding plane
consisting of gouge material, bridges of intact rock and joints (Grgneng et al. 2009)

Variation in shear strength; g,= 1.3 MPa
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Analysis of shear strength at Aknes 3 (of 3)

9 Direct shear test of material from “Aknesrenna”. Mineral composition similar to mineral
composition of gouge material from core at depth of 61-63 m in KH-08-2012 (Langeland

2014)
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Groundwater and slope stability

Groundwater may affect the stability of a slope in several ways:

ﬂ

By reducing the normal stress; groundwater pressure will reduce the normal stress acting on the sliding
plane(s) and by this reduce the friction along the sliding plane(s).

By acting as a driving force; the groundwater may act directly as a driving force in tension joints.

By reducing the internal friction; the groundwater may reduce the internal friction, i.e. the strength of
joint filling material and possibly also cause swelling of gouge material.

Due to expansion by freezing; water expands by approximately 10% when freezing, which may cause
considerably displacements and forces reducing the stability.

By causing erosion; in weak rock, flowing water may cause washout and erosion reducing the stability.

Gl



Hydrogeological input data

ﬂ

Groundwater levels at upper and
middle borehole in the period
November 2006-August 2008

Measurements of water inflow in
new borehole KH-08-2012 in
2013 carried out by NGU
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Groundwater in upper and middle borehole is strongly
affected by snowmelt 2007-2008
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Meteorological effects on recorded extensometer

displacements
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Stability analysis and results 1 (of 3)

Block model by DDA based on
displacement measurements at
the slope surface 2004-2006
(Kveldsvik et al. 2009a)
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Stability analysis by the use of UDEC. also including dynamic input
based on earthquakes with return periods of 100 and 1000 years
by UDEC (Kveldsvik et al. 2009a & 2009b)

Main conclusions related to stability and groundwater:

By varying fracture geometry,
fracture friction, and
groundwater conditions
(based on site-specific data),
stability of a number of
possible models were
compared.

9 The analyses indicate that an earthquake with a return period of 1000 years is likely to trigger sliding to
great depth in the slope at the present ground water conditions and that the slope will remain stable if
draining is implemented. The analyses also indicate that sliding is not likely to be triggered by an
earthquake with a return period of 100 years at the present ground water conditions.

NGl 9 Measuring water pressure at different depths in the boreholes should be carried out as the groundwater
conditions may play an important role in defining sliding surfaces deeper than about 40 m.



Stability analysis and results 2 (of 3)
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7 At the groundwater level representing measurements between Aug. 2007
and Aug. 2008, modelling indicates failure of the toe at 100 yrs. when the
shear strength parameters are reduced to parameters corresponding to 1%

intact rock in the sliding plane.

7 Sensitivity analysis for the variation of the groundwaterlevel should be
carried out when more data is available.
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7 Groundwater: Modelling was carried out at «high», «middle» and «low» groundwater levels according to the
highest measured waterlevel in KH-02-@ (610 mASL (2012-08-31)) and lowest measured waterlevel in KH-02-
@ (600 MmASL (2008-04-01)).

Main conclusion related to stability and groundwater:

NG9 Thereis clearly a big FoS reduction when GW-level changes from middle to high. Reduction in shear strength
also clearly affect FoS.



Conclusions

9 Work from two PhD and one Master thesis has concluded that more information about
geometry, sliding plane/zone, shear strength parameters, and hydrogeological conditions is
crucial for improved stability analyses.

9 Of alle the factors metioned above; the groundwater and hydrogeological conditions is the
factor which has been least investigated.

9 Stability calculations from Aknes all indicate that the groundwater table(s)/water pressure at
different levels play an important role. It is believed that the groundwater both reduces the
normal stress, acts as a driving force and reduce the internal friction at Aknes, additional data
about hydrogeology will make it possible to:

-Develop a hydrogeological model at Aknes
-Use numerical codes combining groundwaterflow and stability analysis

-More relevant analysis of the potential effect of drainage, including probabilistic approaches for
stability analyses and risk analyses related to potential drainage mitigation.
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Conclusions

At present

Fractured rock: GSI=62
Sliding layer: 3% intact rock
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Fractured rock: GSI=37
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